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We obtain and analyze the effect of electron-electron Coulomb interaction on the time-dependent current
flowing through a mesoscopic system connected to biased semi-infinite leads. We assume the contact is
gradually switched on in time and we calculate the time-dependent reduced density operator of the sample
using the generalized master equation. The many-electron states �MES� of the isolated sample are derived with
the exact-diagonalization method. The chemical potentials of the two leads create a bias window which
determines which MES are relevant to the charging and discharging of the sample and to the currents, during
the transient or steady states. We discuss the contribution of the MES with fixed number of electrons N and we
find that in the transient regime there are excited states more active than the ground state even for N=1. This
is a dynamical signature of the Coulomb-blockade phenomenon. We discuss numerical results for three sample
models: short one-dimensional chain, two-dimensional �2D� lattice, and 2D parabolic quantum wire.
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I. INTRODUCTION

Due to the increasing interest in ultrafast electron dynam-
ics considerable progress occurred recently in the theoretical
description of time-dependent mesoscopic transport. New
methods and numerical implementations are rapidly evolv-
ing. Transient currents in open nanostructures are studied
with Green-Keldysh formalism,1–3 scattering theory,4 strobo-
scopic wave-packet description,5 and quantum master
equation.6–10 Most of the results were obtained for noninter-
acting electrons due to the well-known computational diffi-
culties to include time-dependent Coulomb effects.11

It is nevertheless clear that the electron-electron interac-
tion is important in such problems. An effort to incorporate it
has been recently done by Kurth et al.12 followed by
Myöhänen et al.13 who have described correlated time-
dependent transport in a short one-dimensional �1D� chain
defined by a lattice Hamiltonian. The 1D sample was con-
nected to external leads and the current was driven by a
time-dependent bias. Those authors used a method based on
the Kadanoff-Baym equation for the nonequilibrium Green’s
function combined with the time-dependent density-
functional theory to include the Coulomb interaction in the
sample. Once the Green’s functions were calculated total av-
erage quantities of interest could be obtained, such as charge
density or current, both in the transient and in the steady
state. However this method does not say much about the
dynamics of specific internal states of the sample system. In
view of the spectroscopy of excited states14 it is important to
have a theoretical tool for understanding separately the
charging and relaxation of the ground states and excited
states in mesoscopic systems in time-dependent conditions.

Our alternative is to use the density operator instead of
Green’s functions. The complete information about the time
evolution of each quantum state of the sample is captured in
the reduced density operator �RDO�, which is the solution of

the generalized master equation �GME�. Once the RDO is
defined in the Fock space the inclusion of the Coulomb in-
teraction becomes a known computational problem: obtain-
ing the many-electron states �MES� of the sample. The RDO
matrix is then calculated in the basis of the interacting MES.

Let us enumerate some of the previous theoretical
schemes to treat transport and electron-electron interaction
with the master equation. One of the first attempts to derive
a master equation for an interacting system with time-
dependent perturbations belongs to Langreth and Nordlander
for the Anderson model.15 Gurvitz and Prager started from
the time-dependent Shrödinger equation for the MES wave
functions and ended up with Bloch-type rate equations for
the density matrix of a quantum dot.16 The electronic cur-
rents were calculated in the steady state and it was shown
that the Coulomb interaction renormalizes the tunneling rates
between the leads and the system. In the same context König
et al.17 developed a powerful diagrammatic technique by ex-
panding the RDO of a mesoscopic system in powers of the
tunneling Hamiltonian. The time dependence of the statisti-
cal operator of the coupled and interacting system implies a
quantum master equation for the so called populations. In
this method the Coulomb interactions are treated exactly,
which makes it appealing for studying various correlation
effects such as cotunneling.18 The connection between the
real-time diagrammatic approach of König et al.17 and the
Nakajima-Zwanzig approach19,20 to the GME approach was
made transparent by Timm.21

More recently Li and Yan22 combined the n-resolved mas-
ter equation and the time-dependent density-functional
method to write down a Kohn-Sham master equation for the
reduced single-particle density matrix. Also, Esposito and
Galperin,23 using the equation of motion for the Hubbard
operators, have obtained a many-body description of quan-
tum transport in an open system and established a connection
between the GME and nonequilibrium Green’s functions.
They studied simple systems in the steady-state regime: a
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resonant level coupled to a single vibration mode, an inter-
acting dot with two spins, and a two-level bridge. Another
recent work by Darau et al.24 implemented the GME for a
benzene single-electron transistor and used exact MES to
compute steady state currents within the Markov
approximation.24 The stability diagram and the conductance
peaks were obtained and a current blocking due to interfer-
ences between degenerated orbitals was noticed.

In our previous papers8,9 we considered the GME method
for the RDO of independent electrons in the Fock space. We
discussed the transient transport through quantum dots and
quantum wires. The contact between the leads and the
sample was switched on at a certain initial moment t0. We
discussed extensively the occupation of the states within the
bias window and the geometrical effects on the transient cur-
rents. We described the coupling between the sample and the
leads via a tunneling Hamiltonian in which we took into
account the spatial extension of the wave functions of both
subsystems in the contact region.

In spite of earlier or more recent attempts a complete
description of the Coulomb effects in the time-dependent
transport is still missing, especially in sample models larger
than a few sites. In the present work we combine the GME
method with the Coulomb interaction in the sample and we
analyze the dynamics of the electrons starting with the mo-
ment when the leads are coupled to the sample until a steady
state is reached. The Coulomb interaction is included in the
Hamiltonian of the isolated sample and the interacting MES
are calculated with the exact-diagonalization method. This
means the Coulomb interaction is fully included with no
mean-field assumption or density-functional model. The
number of single-electron states �SES� used to define the
matrix elements of the Hamiltonian of interacting electrons
is sufficiently large such that the MES of interest are conver-
gent. Due to the finite bias window only a limited number of
MES participate to the charge transport through the sample,
i.e., only those energetically compatible with the electrons in
the leads. Hence the MES of interest are selected by the
chemical potentials in the leads. We calculate the RDO ma-
trix elements in the subspace of these MES using the GME.
The electron-electron interaction in the leads is neglected.

It is well known that the Fock space increases exponen-
tially with the number of SES. In addition the time-
dependent numerical solution of the GME is also computa-
tional expensive. So at this stage we are limited to describe
only few electrons in the system: up to five in a small system
but only up to three in a larger one.

The paper is organized as follows. In Sec. II we briefly
describe the GME, the inclusion of the Coulomb interaction,
and the selection of the MES. Next, in Sec. III, we show
results for three models: a short 1D chain, a two-dimensional
�2D� lattice of 12�10 sites, and a finite quantum wire with
parabolic lateral confinement. Conclusions and discussions
are presented in Sec. IV.

II. GME METHOD AND COULOMB INTERACTION

In this section we summarize the main lines of our
method. The equations apply both to the lattice and continu-

ous models. The time-dependent transport problem is consid-
ered within the partitioning approach which is known both
from the pioneering work of Caroli25 and from the derivation
of the GME. Prior to an initial time t0 the left lead �L� having
a “source” role, and the right lead �R� having a “drain” role,
are not connected to the sample and therefore can be char-
acterized by equilibrium states with chemical potentials �L
and �R, respectively. Our aim is to compute the time-
dependent currents flowing through the sample and leads
starting at moment t0, when the three subsystems are con-
nected, until a stationary state is reached.

The generic Hamiltonian of the total system consisting of
the sample plus the leads is,

H�t� = HL + HR + HS + HT�t� . �1�

Hl with l=L,R are the Hamiltonians of the leads. We denote
by �ql and �ql the single-particle energies and wave func-
tions, respectively, for each lead. Using the creation and an-
nihilation operators associated to the single-particle states,
cql

† and cql, we can write

Hl =� dq�qlcql
† cql. �2�

HS is the Hamiltonian of the sample. In the absence of the
interaction the SES have discrete energies denoted as En and
corresponding one-body wave functions �n�r�. Using now
the creation and annihilation operators for the sample SES,
dn

† and dn, we can write

HS = �
n

Endn
†dn +

1

2 �
nm

n�m�

Vnm,n�m�dn
†dm

† dm�dn�. �3�

The second term in Eq. �3� is the Coulomb interaction. In the
SES basis the two-body matrix elements are given by,

Vnm,n�m� =� drdr��n
��r��m

� �r��u�r − r���n��r��m��r�� ,

�4�

where u�r−r�� is the Coulomb potential.
The third term of Eq. �1� is the so-called tunneling Hamil-

tonian describing the transfer of particles between the leads
and the sample,

HT�t� = �
l=L,R

�
n
� dq�l�t��Tqn

l cql
† dn + H.c.� . �5�

HT contains two important elements: �1� the time-dependent
switching functions �l�t� which open the contact between the
leads and the sample; these functions mimic the presence of
a time-dependent potential barrier. �2� The coupling Tqn

l be-
tween a state with momentum q of the lead l and the state n
of the isolated sample with wave function �n. The coupling
coefficients Tqn

l depend on the energies of the coupled states
and, maybe more important, on the amplitude of the wave
functions in the contact region. As we have shown in our
previous work8,9 this construction allows us to capture geo-
metrical effects in the electronic transfer. A precise definition
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of the coupling coefficients is however model specific and
will be mentioned in the next section.

The evolution of our system is completely determined by
the statistical operator W�t� associated to the total Hamil-
tonian H�t� defined in Eq. �1�. W�t� is the solution of the
quantum Liouville equation with a known initial value, prior
to the coupling of the sample and leads,

i�Ẇ�t� = �H�t�,W�t��, W�t � t0� = 	L	R	S. �6�

The isolated leads are described by equilibrium distributions,

	l =
e−
�Hl−�lNl�

Trl�e−
�Hl−�lNl��
, l = L,R, �7�

and the isolated sample by the density operator 	S. After the
coupling moment the dynamics of the sample is conveniently
described by the RDO which is defined by averaging the
total statistical operator over those degrees of freedom be-
longing to the leads,

	�t� = TrL TrRW�t�, 	�t0� = 	S. �8�

In the absence of the electron-electron interaction the
MES eigenvectors of HS are bit strings of the form 	�

= 	i1

� , i2
� , .. , in

� , . . .
, where in
�=0,1 is the occupation number of

the nth SES. The set ��� is a basis in the Fock space of the
isolated sample and the RDO can be written as a matrix in
this basis. From Eqs. �6�–�8� we obtain in the lowest �sec-
ond� order in the coupling parameters Tqn

l the GME �see Ref.
8 for details�,

	̇�t� = −
i

�
�HS,	�t�� −

1

�2 �
l=L,R

� dq�l�t���Tql,�ql�t�� + H.c.� ,

�9�

where the coupling operator Tql has matrix elements

�Tql��� = �
n

Tqn
l ��	dn

†	�
 . �10�

The operators �ql and ql are defined as

�ql�t� = e−itHS�
t0

t

ds�l�s�ql�s�ei�s−t��qleitHS,

ql�s� = eisHS�Tql
† 	�s��1 − f l� − 	�s�Tql

† f l�e−isHS,

and f l is the Fermi function of the lead l.
In the presence of the electron-electron interaction in the

sample the MES which are eigenstates of HS are linear com-
binations of bit strings: HS 	��=E� 	��, where 	��
=��C��	�
, C�� being the mixing coefficients which can be
found together with the energies E� by diagonalizing HS. �To
distinguish better between the noninteracting and the inter-
acting MES we use the right angular bracket for the former
and the regular curved bracket for the later.� Using now the
set ��� as a basis, i.e., the interacting MES, the GME has the
same form as Eq. �9�, where the matrix elements of all op-
erators are now defined in the interacting basis and the ma-
trix elements of the coupling operators are

�Tql��
 = �
n

Tqn
l ��	dn

†	
� . �11�

Because the sample is open the number of electrons N
contained in the sample is not fixed. The Hamiltonian HS
given in Eq. �3� commutes with the total “number” operator
�ndn

†dn. Thus N is a “good quantum number” such that any
state 	�� has a fixed number of electrons. So the MES can
also be labeled as 	��= 	N , i� with i=0,1 ,2 , . . . an index for
the ground and excited states of the MES subset with N
electrons. The many-body energies can also be written as
E�=EN

�i�. In the practical calculations N varies between 0 �the
vacuum state� and Nmax which is the total number of SES
considered in the numerical diagonalization of HS. The total
number of MES is thus 2Nmax.

If the coupling between the leads and the sample is not
too strong we expect that only a limited number of MES
participate effectively to the electronic transport. These states
are naturally selected by the bias window ��R,�L�. In the
following examples, by selecting suitable values of the
chemical potentials in the leads, we will truncate the basis of
interacting MES to a reasonably small subset such that we
can solve numerically Eq. �9� with our available computing
resources. To relate the bias window with the effective MES
we need to consider the chemical potential of the isolated
sample containing N electrons,

�N
�i� = EN

�i� − EN−1
�0� , �12�

which is the energy required to add the Nth electron on top
of the ground state with N−1 to obtain the ith MES with N
particles.26 We expect the current associated to the MES
	N , i� to depend on the location of the chemical potential �N

�i�

relatively to the bias window. In particular, it is clear that if
at the coupling moment t0 the sample is empty all MES with
�N

�i���L will remain empty both during the transient and the
steady states so they can be safely ignored when solving the
GME.

The current through the sample is calculated as the time
derivative of the number of particles,

�j�t�
 = �Ṅ�t�
 = �
N=1

Nmax

N�
�N

	̇�N�N
� �

l=L,R
�
N=1

Nmax

�
�N

j�N

l �t� ,

�13�

where �N denotes the class of many-body states with N elec-
trons and j�N

l �t� is the current in the lead l associated to those
states. These “partial” currents are identified from the right-
hand side of the generalized master Eq. �9�.

Since the memory kernel in the GME is expanded only up
to the second order in the lead-sample tunneling Hamiltonian
HT the cotunneling processes are not included in our calcu-
lations. Therefore we are restricting ourselves to sequential
tunneling regime �see also Ref. 10�. In the weak-coupling
�Coulomb-blockade� regime which we are interested in the
contributions of the higher-order correlations can be safely
disregarded.
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III. MODELS AND RESULTS

We have numerically implemented the GME method both
for lattice and continuous models. The sample models are: a
short 1D chain with five sites, a 2D rectangular lattice with
12�10=120 sites, and a short quantum wire with parabolic
lateral confinement. In all cases the coupling functions have
the form

�l�t� = 1 −
2

e�t + 1
�14�

with � a constant parameter, such that at the initial moment,
which is t0=0, we have �l�0�=0 �no coupling�, and in the
steady state, for t→�, �l=1 �full coupling�.

A. Toy model: Short 1D chain

In this model the two semi-infinite leads are attached to
the ends of a 1D chain with five sites. The coupling between
a lead state with wave function �ql and a sample state with
wave function �n is given by the product between the wave
functions at the contact site,

Tqn
l = Vl�ql

� �0��n�il� , �15�

where 0 is the contact site of the lead l=L,R, the end sites of
the sample being iL=1 and iR=5.

The reason to call this a toy model is that we can obtain
the complete set of 25=32 MES, i.e., we do not need to cut
the basis of the five SES. We also do not need to cut the MES
basis, all matrix elements of the statistical operator can be
numerically calculated, even if not all of them might be im-
portant for the currents. In addition we will consider the
strength of the Coulomb interaction as a free parameter U,
whereas in a realistic systems this is fixed by the electron
charge and the dielectric constant of the material. Our goal is
to have a qualitative understanding of the underlying phys-
ics, and, in particular, to show the presence of the Coulomb-
blocking effects at certain values of U or of the chemical
potentials of the leads. The Coulomb matrix elements de-
fined in Eq. �4� are calculated as

Vnm,n�m� = �
i�i�

�n
��i��m

� �i��
U

	i − i�	
�n��i��m��i�� . �16�

In Fig. 1 we show the equilibrium chemical potentials �N
�0�

corresponding to ground states with 1�N�5 particles
against the interaction strength U. One observes a linear de-
pendence of �N

�0� on U with slope increasing with N. Obvi-
ously the total Coulomb energy increases both with U and N.

Let us now briefly review the Coulomb-blockade
scenario.27 Suppose the isolated sample contains N electrons
and the chemical potentials of the leads are chosen such that
�N

�0���R��L��N+1
�0� . Then the bias window ��R,�L� may

include one or more of the excited configurations with N
particles. In general some states with N electrons may have
excitation energies exceeding �L or even �N+1

�0� . This situation
corresponds to the Coulomb-blockade phenomenon. Indeed,
the addition of the �N+1�th electron is energetically forbid-
den. Consequently the current in the steady state should van-
ish. However, shorter or longer transient currents are gener-
ated by all many-body configurations in the vicinity of the
bias window.

Figures 2�a� and 2�b� show the total currents in the left
lead and the total charge residing in the sample for several
values of the interaction strength. U is measured in units of
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FIG. 1. �Color online� The equilibrium chemical potentials �N
�0�

for 1�N�5 as a function of the interaction strength U. The dotted
lines mark the chemical potentials of the leads selected in the trans-
port simulations shown in the next figure, i.e., �L=5.25 and �R

=4.75.
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FIG. 2. �Color online� The total current entering the 5�1 sample from the left lead as a function of time for the different values of the
interaction strength U. The chemical potentials of the leads �L=5.25 and �R=4.75.
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tS, the hopping parameter in the sample,8 and the time is
expressed in units of � / tS while the current is in units of
etS /�. The coupling constant in Eq. �14� is �=1. The system
is initially empty and thus 	�0�= 	00000
�00000	.

The chemical potentials of the leads, �L=5.25 and �R
=4.75, are chosen such that in the absence of Coulomb in-
teraction, i.e., for U=0, �4

�0� is located within the bias win-
dow. In this case we obtain in the steady state the mean
number of electrons about 3.6 and a nonvanishing current in
the leads. This is understandable, since �4

�0�=E4=5, which is
the fourth level of the isolated sample. The occupation of this
level in the steady state is about 0.6, the other states being
either full or empty. Also in this case, the excited states have
small contributions to the steady-state current as the system
tends to be in the ground state with N=3 electrons. Those
contributions may also depend on the coupling strength of
individual states with the leads but in general remain small.28

The situation may change for U�0. For the interacting
system, e.g., for U=0.3, the system settles down in the
Coulomb-blockade regime, the total current being almost
suppressed in the steady state. This happens because the in-
teraction pushes the chemical potentials upwards such that
for U=0.3 both ground states with N=3 and N=4 electrons
are outside the bias window and cannot produce steady cur-
rents. When the interaction strength is further increased to
U=0.5 and U=1 the steady-state currents are gradually re-
stored. This could look surprising but one can see in Fig. 1
that by increasing U the ground-state configuration with
three electrons approaches and enters the bias window. Con-
sequently the transport becomes again possible. Note that
while the steady-state currents are not monotonous with re-
spect to U the charge absorbed in the system continuously
decreases, Fig. 2�b�.

In Fig. 3 we show the charge accumulated on the
N-particle states with N=1, .. ,4 during the contacting with
the leads for an unbiased case with �L=�R=5.75, compared
to the presence of a small bias, �L=6 and �R=5.5. For a
given N this charge is calculated as QN=N��N

	�N�N
, where

�N spans all MES with N electrons. We omit the contribution
of N=5.

The interaction strength is U=0.5. The system is initially
empty and the equilibrium chemical potential �4

�0� is con-
tained within the bias window. The charging is smooth in
time in both cases and the differences between the biased and
unbiased case show up slowly during the evolution of the
system. So the evolution of the system is smooth also with
the bias window.

We observe that the states are occupied in the increasing
energy order and they also deviate with the bias window only
after some time. Later in time the occupation of the two-
particle states drops while that of the three-particle states
saturates toward the steady state. For the present values of
the chemical potentials the single-particle configurations are
almost insensitive to the bias and are present only in the
transitory regime. Then they vanish faster than the two-
particle configurations. In the presence of the bias the equi-
librium chemical potential �4

�0� lies within the bias and thus
the occupation of three-particle states decreases while the
four-particle states are slightly populated. So after this in-
spection of the evolution of the system we can say that is
sufficiently slow and continuous such that the interpretation
of the charge and currents in terms of the uncontacted many-
body states of the sample is meaningful.

In transport experiments the strength of the electron-
electron interaction is indeed fixed. The usual way to obtain
the Coulomb blockade is to vary the chemical potentials of
the leads relatively to the energy levels of the sample, or vice
versa. In Fig. 4 we show the currents in both leads for dif-
ferent values of the chemical potential �R while keeping
fixed �L=6. The strength of the Coulomb interaction is U
=1 and �4

�0� almost equals �L. The steady-state value of the
current decreases as �R increases because fewer states are
included in the bias window. The Coulomb blockade onset
occurs for �R�5, when �3

�0� drops below �R. We observe
that the maximum value of the total current in the left lead
does not change much when �R varies. In contrast, the tran-
sient current in the right lead is negative and increases in
magnitude as �R increases. This means that the right lead
feeds the many-body configurations that fall below �R. For
the unbiased case, �L=�R=6, the final current is zero, as
expected. The maximum current occurs when the contact
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between the sample and the leads is almost saturated, ��t�
0.93. After that the current decreases while the charge still
increases, but slower, as seen in Fig. 3, until the steady state
is reached. Since the current associated to one state is essen-
tially the time derivative of the population of that state, the
maximum current corresponds to a common inflexion point
of the populations.

Finally, both in the transient and in the steady states the
currents have small periodic fluctuations determined by the
permanent transitions of electrons between the states in the
sample and the states in the leads and back.28 They are best
seen in Fig. 2�a�. Such fluctuations have also been obtained
very recently by Kurth et al.29 using combination of the non-
equilibrium Green’s functions and the time-dependent
density-functional theory of the Coulomb interaction.

The contribution of the excited states to the transient and
steady-state currents depends strongly on the bias window. In
Fig. 5 we show the currents entering the sample from the left
lead, carried by the states with N=2 and N=3 electrons, for
�R=3,4 ,5 �the cases with nonvanishing current in the
steady state�. We also show separately the contribution to the
currents associated to the ground-state configurations, related
to �2

�0� and �3
�0�, and the complementary contribution of all

the excited states with two and three particles. In this case
the wave vectors of the ground states are mostly given by the
noninteracting wave vectors: 	11000
 with weight 97% and
	11100
 with 98% for N=2 and N=3, respectively.

For �R=3 the steady-state current of the ground-state
configuration is vanishingly small and so the total negative
current associated to two-particle states comes mostly from
the excited states. In the many-body energy spectrum of the
isolated sample we obtain five excited configurations with
�2

�i�� ��R,�L�= �3,7�. As �R moves up the steady-state cur-
rent of the ground state with N=2 becomes also negative.
The combined contributions of the excited states vanishes at
�R=5. As can be seen from Fig. 1 �R=5 is well above �2

�0�

but very close to �3
�0�. Consequently, the ground configura-

tion with N=2 is heavily populated in the steady state,
whereas the excited states have low probability and thus
weak current. Actually, as we have checked, all the currents
associated to each excited state with N=2 vanish individu-
ally. In the transient regime however the N=2 currents in all
three cases are dominated by the excites states.

The currents of the excited states having N=3 electrons
are positive at �R=3 but change sign at �R=4. For �R=5
their magnitude exceeds the contribution of the ground state
which is always positive. A more detailed analysis of the
currents carried by specific excited states will be given for
the 2D model.

For our small 1D toy model all 32 MES are included in
the GME. For a larger system the number of MES increases
exponentially with the number SES and the many-body basis
must be truncated to a reasonable small subset such that the
GME is solved in a realistic CPU time. In general one can
neglect the MES with high energies for which �n

0��L by
assuming they will remain unpopulated after switching on
the contacts. To show that we compare in Fig. 6 the exact
currents carried by the three-particle configurations with the
results obtained with the first 26 and 20 MES, respectively.
The truncation to 26 states ignores all configurations with
four and five electrons, and the truncation to 20 states in-
cludes only the lowest three three-particle states. It is clear
that the truncation to 26 MES is still accurate but when cut-
ting to 20 MES the differences are enhanced. However, be-
cause the chemical potentials of the leads are chosen such
that �3

�0� is above the bias window even the last truncation
leads only to small changes in the total current which is
mainly carried by states with one and two particles �not
shown�.

Based on these arguments, in Sec. III B we show results
derived with a truncated MES basis. In addition, the MES
themselves are obtained with a truncated SES subset deter-
mined by the strength of the Coulomb interaction. This trun-
cation is done such that the calculated MES are convergent.
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FIG. 5. �Color online� The separate contributions to the current of the ground state with N particles and of all excited states with N
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made in the text. Other parameters: VL=VR=0.750 and U=1.0.

MOLDOVEANU et al. PHYSICAL REVIEW B 81, 155442 �2010�

155442-6



B. 2D lattice

We show now results for a 2D rectangular lattice with
12�10 sites. For a lattice constant of a=5 nm this sample
can be seen as a discrete version of a quantum dot of
60 nm�50 nm. We used the lowest ten SES of the nonin-
teracting sample in the numerical diagonalization of the in-
teracting Hamiltonian. This number is sufficient to produce
convergent results for the first 50 MES for an interaction
strength U=0.8. The Coulomb matrix elements are calcu-
lated in the same way as for the 1D case, Eq. �16�, except
that now the site indices are two dimensional, i.e., i= �ix , iy�
and i�= �ix� , iy��.

The two contact sites are chosen at diagonally opposite
corners of the sample. The coupling coefficients are calcu-
lated with Eq. �15�, like for the 1D chain, and depend on the
wave function of the particular SES at the contact sites.
These coefficients are illustrated in Fig. 7�a�. The reduced
density matrix is calculated using the first 50 MES. This
allowed us to take into account many-body configurations
with up to three electrons.

In Fig. 7�b� we show the chemical potentials �N
�i� for the

ground and excited states with N=1, 2, and 3 particles. At
the initial moment t0=0 the system is empty. Based on the
previous example, the main contribution to the currents in
the steady states is expected from those MES with ground-
state chemical potentials located inside the bias window
��R,�L�. One also observes excited configurations with N
particles having chemical potentials larger than �N+1

�0� .
In the following we discuss the currents carried by the

various many-body states involved in transport. In a first
series of calculations we selected the chemical potential �R
=0.2 and used two values of the chemical potential of the left
lead �L=0.4 and �L=0.6. For �R=0.2 and �L=0.4 the bias
window contains only the first and the second excited con-
figurations with N=1, Fig. 7�b�. The ground states for N=1
and N=2 are instead located below and above the bias win-
dow, respectively. Consequently the steady-state current is
very small. When �L increases to 0.6 the ground-state con-
figuration with N=2 enters the bias window and the current
increases, Fig. 8�a�.

To analyze the transient regime we split the current into
contributions given by the ground state and excited states
with one electron �see Fig. 8�b��. When �L=0.4 the first and
second excited state carry currents exceeding the current as-
sociated to the ground state, which survive all the way to the
steady state. The current corresponding to the second excited
state is smaller than the current of the first excited state but
comparable to that of the ground state. This is explained by
the strength of the coupling coefficients shown in Fig. 7�a�,
the second single-particle state being stronger coupled to the
leads. The remaining higher excited states give oscillating
and fast decaying transient currents. In Fig. 8�c� �L=0.6 and
therefore higher excited states enter the bias window; their
transient currents are still decaying but at a smaller rate.
Comparing with Fig. 8�a� it is clear that the transient regime
is dominated by excited states.

Now we look at the contribution of the excited states with
N=2 for two cases, �L=0.6 and �L=0.9. Again, the inspec-
tion of the diagram in Fig. 7�b� predicts the results of Fig. 9.
When �L=0.6 there is just one excited configuration within
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the bias window, in addition to the ground state. In Fig. 9�a�
we see that in the steady state these two configurations give
significant contributions to the current, whereas the higher
excited states play a role only in the transient regime. Figure
9�b� shows that at �L=0.9 the currents of the excited states
and of the ground state are decreasing, some of them reach-
ing even negative values toward the steady state. This hap-
pens because the bias window includes now the ground state
with N=3 and the excited states with N=2 deplete in the
favor of the ground state.

The sign of the current carried by states with N particles
depends on the placement of the corresponding ground-state

chemical potential relatively to the bias window. For ex-
ample, if we fix �L=1.5 and �R=0.65, we obtain �2

�0���L.
Figure 10�a� shows the N-particle currents when the sample
initially contains two electrons in the ground state. This ini-
tial state evolves faster to the steady state than the empty
system. While for N=3 the current in the left lead is positive,
for both N=2 and N=1 the currents are negative. The charge
residing on each N-particle state and the total charge are
shown in Fig. 10�b�. Since single-particle configurations are
unlikely their occupation vanishes. The total charge accumu-
lated on the N=3 states increases up to 2 while the total
charge on the N=2 states decreases from 2 to 0.75.
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C. Parabolic quantum wire

In this section we apply the GME with Coulomb interac-
tion to describe the transport through a short quantum wire
of length Lx=300 nm with a parabolic confinement in the y
direction perpendicular to the direction of transport. The con-
tact ends of the isolated wire at �Lx /2 are described by hard
walls. This is now a continuous model, where a large func-
tional basis is used to expand the eigenfunctions of the sys-
tem in. In a similar manner we use a functional basis with
complete truncated sets of continuous and discrete functions
to expand the eigenfunctions of the semi-infinite parabolic
leads in. To show that we can describe the combined geo-
metrical effects imposed on the system by its geometry and
an external perpendicular magnetic field we place the quan-
tum wire is in an external magnetic field of strength 1.0 T.
The characteristic confinement energy is given by ��0
=1.0 meV. We assume GaAs parameters with m�=0.067me,
�=12.4 meV. The magnetic length modified by the para-
bolic confinement is aw=�� / �m��w� with �w

2 =�0
2+�c

2 and
the cyclotron frequency �c=eB / �m�c�. At B=1.0 T, aw
=23.87 nm. The semi-infinite leads having the same para-
bolic confinement and being subject to the same external
perpendicular magnetic field have a continuous energy spec-
trum with discrete Landau subbands.

The Coulomb potential in Eq. �4� in the 2D wire is de-
scribed by

u�r − r�� =
e2

���x − x��2 + �y − y��2 + �2
�17�

with the small convergence parameter �� /aw�=0.01 to facili-
tate the two-dimensional numerical integration needed for
the matrix elements, Eq. �4�.

After the GME, Eq. �9�, has been transformed to the in-
teracting many-electron basis by the unitary transformation
obtained by the diagonalization of HS, Eq. �3�, we truncate
the RDO, Eq. �8�, to 32 MES. For the bias range 0.0���
=�L−�R�1.7 meV used here ten SES are sufficient to ob-
tain these lowest 32 states with good accuracy. We will be
omitting singly occupied states of high energy that should
not be relevant for the parameters here. The natural strength

of the Coulomb interaction will only give us MES that are
occupied by one or two electrons in the energy range 0–6
meV covered by the 32 MES.

Since in the partitioning approach �HS ,HL�=0 we have to
construct Tqn

l as a nonlocal overlap of �n and �q
L,R on the

contact regions Cl , l=L,R,9

Tqn
l = �

Cl

drdr���ql
� �r��n�r�gqn

l �r,r�� + H.c.� , �18�

gqn
l �r,r�� = g0

l exp�− �1
l �x − x��2 − �2

l �y − y��2�

� exp�− 	En − �ql	
�E

l � . �19�

As before �ql is the energy spectrum of lead l and En is the
energy of the SES numbered by n in the quantum wire. The
quantum number q for the states in leads represents both the
discrete Landau band number and a continuous quantum
number that can be related to the momentum of a particular
state. Here we use the parameters �1aw

2 =�2aw
2 =0.25, �E

LR

=0.25 meV, and g0
LR=40 meV for B=1.0 T. The domain of

the overlap integral for the leads is �2aw into the lead or the
system for x and x� from each end of the wire at �Lx /2 and
between �4aw for y and y�, see Ref. 9 for an exact defini-
tion. All the SES will be coupled to the leads, but the cou-
pling strength will depend on the character of the SES,
whether it is an edge or bulk state and other finer geometrical
details that is brought about by the magnetic field.

The right chemical potential �R is held at 1.4 meV and
the transport properties are calculated for different values of
the bias �� by varying �L. Figure 11 compares the total
occupation of all one-electron and two-electron MES for the
interacting system at two different values of the bias. At,
��=0.2 meV we see that almost solely one-electron states
are occupied, while for ��=1.2 meV initially it is likely to
have one-electron states occupied, but very soon the occupa-
tion of the two-electron states becomes as probable with the
likelihood of the occupation of the one-electron states fast
reducing with time. We also have to admit here that even
though the steady state value of the total current through the
system can be deduced by the values of the current at 270 ps,
the charging of the system takes much longer time, since we
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are using here a very weak coupling to the leads that mimics
a tunneling regime.

If we now use the average value of the current in the left
and right leads at t=270 ps as a measure of the steady-state
current we get the information displayed in Fig. 12, where
the steady-state value of the current is shown for the inter-
acting system as a function of the bias and compared to the
charge in the system. We have a clear Coulomb blocking in
the interacting system. In the case of a noninteracting system
the lack of a gap between the one-electron and two-electron
MES and a strong mixing of the energy regimes of two- and
three-electron states the two-electron plateau only appears as
a small shoulder. The 32 MES selected here include no three
electron or MES with higher number of electrons. It should
be mentioned here that a different choice of the right bias �R
can result in the system charging faster and thus at the same
time the total current through it being smaller. This comes
from the fact that the states have a different coupling to the
leads and the time range shown here is very much in the
transient or its long exponential decay regime.

Figure 13 displaying the current in the right lead gives an
idea how the Coulomb-blocking plateau appears after the
transition regime. The transition regime where the right cur-
rent goes negative, i.e., where it supplies charge to the sys-
tem is partially truncated from the figure.

IV. SUMMARY AND CONCLUSIONS

We calculated time-dependent currents in open mesos-
copic systems composed by a sample attached to two semi-
infinite leads by solving the generalized master equation for
the reduced density operator acting in the Fock space of the
sample. This is the natural framework for including the Cou-
lomb electron-electron interaction in the sample, which is the
main achievement of this work. The Coulomb interaction is
treated in the spirit of the exact-diagonalization method, i.e.,
in a pure many-body manner. The interacting many-body
states of the sample are expanded in the basis of noninteract-
ing “bit-string” states with unspecified number of electrons.
We believe our method is a viable alternative to a recent
approach based on a time-dependent density-functional
model.12,13,29 We used three sample models, a short 1D wire
with five sites, but also a larger 2D lattice with 120 sites and
a continuous model, whereas the cited group used much
smaller samples even with no structure.29

Indeed, due to computational limitations we could use
only a restricted, effective number of many-body states in the
GME, between 30–50 depending on the model, from the
bottom of the energy spectrum. We chose the bias window
��R,�L� and the strength of the sample-leads coupling pa-
rameters VR,L such that only the effective states contribute to
the transport of electrons through the sample, whereas the
states with higher energy are unreachable by the electrons.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

C
ha

rg
e

(-
e)

t (ps)

=0.2 meV

1 e
2 e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

C
ha

rg
e

(-
e)

t (ps)

=1.2 meV

1 e
2 e

(b)(a)

∆µ ∆µ

FIG. 11. �Color online� The total charge residing in one- and two-electron states as a function of time for two different values of the bias
��. B=1.0 T, Lx=300 nm, and ��0=1.0 meV.

0

0.1

0.2

0 0.5 1 1.5

1

1.1

1.2

1.3

1.4

I(
nA

)

C
ha

rg
e

(-
e )

∆µ (meV)

Current
Charge

FIG. 12. �Color online� The total steady-state current for inter-
acting ten SES, and the total charge at t=270 ps, for different val-
ues of the bias ��. B=1.0 T, Lx=300 nm, and ��0=1.0 meV.

FIG. 13. �Color online� The total current in the right lead for
interacting and noninteracting ten SES as a function of the bias ��
and time. B=1.0 T, Lx=300 nm, and ��0=1.0 meV.

MOLDOVEANU et al. PHYSICAL REVIEW B 81, 155442 �2010�

155442-10



Consequently the number of electrons in the sample can be
only up to three or four.

We could calculate the contribution to the charge and cur-
rents in the sample and in the leads, respectively, correspond-
ing to any particular many-body state. We use the 1D chain
as a toy model to emphasize the dominant role of the excited
states in the transient regime and the onset of the Coulomb
blockade in the steady state. A similar 1D model with four
sites 1D has been considered recently by Myöhänen et al.13

As shown also in our previous works on time-dependent
transport in noninteracting systems the GME method in-
cludes information on the energy structure of the sample but
also on the geometrical properties reflected in the wave func-
tions and sample-lead contacts.8,9,28 Here we illustrate these
aspects, in the interacting case, for two nanosystems: a two-
dimensional quantum dot described by a lattice Hamiltonian
and a short parabolic quantum wire. The time-dependent oc-
cupation of specific many-body states was thoroughly ana-
lyzed for different values of the chemical potentials of the
leads. It turned out that the excited states with N electrons
contribute to the steady-state currents if the ground-state
configuration with N+1 particles is not available for trans-
port. However, if �N

�0���R and at the same time �N+1
�0� lies

within the bias window the excited states with N particles are
active only in the transient regime and become depopulated
in the steady-state regime.

This behavior is of interest in the excited-state spectros-
copy experiments.14 The experimental detection of excited
states based on their contribution to the transport is definitely
difficult. The time-dependent currents associated to excited
states have not been discussed theoretically so far. Our re-

sults on the behavior of such states may only indicate some
general rules: �i� the excited states with N electrons contrib-
ute to the steady-state currents if the ground-state configura-
tion with N+1 particles is not available for transport; �ii� if
�N

�0���R and at the same time �N+1
�0� lies within the bias

window the excited states with N particles are active only in
the transient regime and become depopulated in the steady-
state regime. On the other hand, important information about
the positions of the chemical potentials of ground-state
N-particle configurations �N

�0� could be extracted from the
steplike structure of the steady-state I-V characteristics. Once
these are known one could perform transient measurements
by varying the bias in the range ��N

�0� ,�N+1
�0� �. A steady-state

nonvanishing current would then be most likely due to an
excited state, and the different transients are clearly signa-
tures of excited states.
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